Лопандя А.В., Немтинов В.А. Основы ГИС и цифрового тематического картографирования - файл n1.doc

Лопандя А.В., Немтинов В.А. Основы ГИС и цифрового тематического картографирования
Скачать все файлы (6374.5 kb.)

Доступные файлы (1):
n1.doc6375kb.30.03.2014 10:10скачать

n1.doc

  1   2   3   4


  1. Министерство образования и науки Российской Федерации


Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

"Тамбовский государственный технический университет"

А.В. Лопандя, В.А. Немтинов



Основы ГИС и цифрового
тематического
картографирования

Допущено УМО по университетскому политехническому образованию
в качестве электронного учебного пособия для студентов,
обучающихся по специальности 230201 "Информационные системы
и технологии" и направлениям подготовки бакалавров
и магистров 150400 "Технологические машины и оборудование"





      1. Тамбов

      2. Издательство ФГБОУ ВПО "ТГТУ"

      3. 2011



Представлены общие сведения о геоинформационных системах (ГИС), основные термины и понятия. Рассмотрены вопросы ввода данных и цифрования, приведены краткие характеристики основных ГИС, их преимущества и недостатки. Даны общие представления о программном обеспечении ГИС фирмы ESRI–ArcFM, ArcInfo и ArcView. Материал содержит графические иллюстрации и видеофрагменты, поясняющие представленный теоретический курс и работу с описываемым программным обеспечением.

Включает в себя основные тематические разделы дисциплины "Компьютерные технологии и системы", входящей в блок общепрофессиональных дисциплин федерального компонента направления подготовки бакалавров и магистров 150400 "Технологические машины и оборудование".

Предназначено для студентов, обучающихся по специальности 230201 "Информационные системы и технологии" и направлениям подготовки бакалавров и магистров 150400 "Технологические машины и оборудование".
Оглавление

Стр.

Введение 5

Глава 1. Общее представление о ГИС 6

1.1. Определение информационных систем 6

1.1.1. Подсистемы ГИС 7

1.1.2. Структура информационных систем 9

1.2. Перспективы развития ГИС в России 11

Глава 2. Основные термины и понятия 13

2.1. Понятие карты и работа с ней 13

2.2. Пространственные объекты 15

2.3. Шкалы измерений 18

2.4. Пространственные координаты 20

2.5. Масштаб карты 24

2.6. Графическое представление объектов и атрибутов 25

2.6.1. Растровые модели 28

2.6.2. Векторные модели 29

Глава 3. Ввод данных, цифрование исходной информации 31

3.1. Методы ввода векторных данных 32

3.2. Методы ввода растровых данных 33

3.3. Устройства ввода 34

Глава 4. Геоинформационные системы 38

4.1. Краткие характеристики основных ГИС 39

4.2. Преимущества и недостатки при работе с ГИС 40

Глава 5. Система ArcFM фирмы ESRI 42

5.1. Преимущества использования 44

5.2. Средства АМ/FM ГИС 45

Глава 6. ArcInfo – профессиональная ГИС 46

Глава 7. ArcView – настольная ГИС 47

7.1. Общее представление о системе, интерфейс и преимущества работы 47

7.2. Приложения, входящие в систему, возможности,

которые они предоставляют 49

Глава 8. Работа в среде ArcView 54

8.1. Создание нового проекта 54

8.2. Знакомство с видами 55

8.3. Создание тем и шейп-файлов 57

8.4. Знакомство с таблицами 60

8.5. Трехмерные изображения 63

8.6 Разработка проекта "Пространственная модель городской территории" 65

Заключение 72

Список литературы 74

Введение
Географические информационные системы (ГИС) — это увлекательное поле деятельности с быстро растущими возможностями для тех, кто знаком с концепциями и технологией. Существует общее заблуждение о том, что поскольку ГИС легкодоступны и имеются во многих различных организациях, можно просто сесть за компьютер и начать ими пользоваться. Однако ГИС совсем не так просты, как, например текстовые редакторы. Также как и пользование текстовым редактором предполагает нашу способность организовывать наши мысли в связную последовательность предложений и абзацев, так и ГИС требуют знакомства с языком карт. Если спросить, большинство из нас скажут, что хорошо знают карты. Мы привычно пользуемся картами дорог, и, если необходимо, то заглядываем в атлас мира с его политическими, физическими и экономическими границами, связанными с ними цветами, графическими символами, текстом и, конечно, стрелкой направления на север. Большинство из нас, однако, не задумывается ни об объеме информации, которую содержит карта, ни о процессах обобщения, которые возникают при решении вопроса о том, какие детали включаются, а какие – нет. Значительная часть этой генерализации обусловлена масштабом карты. Чем мельче масштаб (и больше размер области, отображенной на карте), тем более глубокая генерализация требуется для создания картографической модели. Идея о том, что карта является моделью реальности, возможно, наиболее важная идея, которую должен усвоить будущий специалист по ГИС [11].

Современные тенденции рынка технических средств показывают, что ГИС — быстро растущая область информационных технологий, далеко обгоняющая многих других, причем даже в периоды спада. А по мере роста числа организаций, знакомых с этой технологией, будет расти и потребность в понимании ее базовых принципов, а также нужда в специалистах, знающих эти принципы. При знакомстве с ГИС могут возникать некоторые проблемы поэтому от изучающего ГИС требуется изучать больше чем просто технику. Прежде чем освоить технику, вам нужно освоить ее идеи.

1. ОБЩЕЕ ПРЕДСТАВЛЕНИЕ О ГИС
1.1. Определение информационных систем
В наиболее общем смысле, геоинформационные системы это инструменты для обработки пространственной информации, обычно явно привязанной к некоторой части земной поверхности, которые используются для ее управления. Это рабочее определение не является ни полным, ни точным. Как и в случае с географией, термин трудноопределим и представляет собой объединение многих предметных областей. В результате, нет общепринятого определения ГИС. Сам термин изменяется в зависимости от интеллектуальных, культурных, экономических и даже политических целей. Эта терминология стала в действительности очень изменчивой, приводя к все новым определениям, постоянно проникающим как в научную, так и в популярную литературу.

Для опытного пользователя ГИС не требуется определения. Но для тех, кто только слышал об этой технологии, определение может оказаться полезным. Для предварительного рассмотрения можно взять определение, данное Дэвидом Райндом, назвавшим ГИС "компьютерной системой для сбора, проверки, интеграции и анализа информации, относящейся к земной поверхности". Это определение содержит ряд весьма полезных элементов, которые следует рассмотреть подробнее. Во-первых, оно говорит, что ГИС имеют дело с земной поверхностью. Хотя это не является абсолютно необходимым условием, подавляющее большинство областей применения ГИС имеют дело с участками этой поверхности. Во-вторых, утверждение о том, что ГИС используются для сбора, проверки, интеграции и анализа информации, напоминает о большом числе групп операций, необходимых для любой геоинформационной системы. Предлагались и другие определения ГИС. Некоторые проявляли сильную связь между ручными и компьютерными методами анализа карт, (Dickinson и Calkins 1988, Aronoff 1989) другие явно указывали среди главных целей ГИС использование их как инструмента анализа информации о земле (Aronoff 1989, Parker 1988, Tikunov и Trifimov 1989).

Отсутствие общепринятого определения привело к значительному недопониманию того, что такое ГИС, каковы их возможности и для чего такие системы могут применяться. Это привело к тому, что некоторые люди полагают, например, что нет разницы между компьютерной картографией, компьютерным черчением и собственно ГИС. Поскольку графические экраны всех трех систем могут выглядеть одинаково как для случайного, так и для опытного наблюдателя, легко предположить, что эти системы, при небольших различиях, в принципе, – одно и тоже. Но любой, кто попытается анализировать карты, скоро поймет, что системы компьютерной картографии, придуманные для создания карт из графических примитивов в сочетании с описательными атрибутами, прекрасно подходят для отображения карт, но обычно не содержат аналитических возможностей ГИС. Аналогично, для чисто картографических целей желательно использовать именно систему компьютерной картографии, разработанную специально для ввода, организации и вывода картографических данных, нежели продираться через мириады аналитических функций мощно профессиональной ГИС. Системы компьютерного черчения, специально разработанные для создания графических изображений, не привязанных к внешним описательным данным, — прекрасный инструмент для инженера, ускоряют создание чертежей и упрощают их редактирование. В отличие от систем компьютерной картографии, они неудобны для создания карт, а также не имеют средств анализа карт, обычно главной задачи ГИС. Определение можно расширить также и до включения организаций и людей, работающих с пространственными данными. Для любой быстро развивающейся технологии определения могут меняться [1].

Сформулируем определение, которое представляет ГИС как набор подсистем, ее образующих. Это определение, предложенное в качестве стандарта Марблом и Пюке, в целом резюмирует то, что мы делаем с помощью ГИС, и как мы это делаем. В нем говорится о том, что ГИС имеют дело с пространственно-временной информацией и часто, но не обязательно, используют компьютеры. Более важно, что это определение использует идею подсистем, которая дает легко понимаемые рамки изучения ГИС.
1.1.1. Подсистемы ГИС
В соответствии с данным выше определением, ГИС имеют следующие подсистемы:

1. Подсистема сбора данных, которая собирает и проводит предварительную обработку данных из различных источников. Эта подсистема также в основном отвечает за преобразования различных типов пространственных данных (например, от изолиний топографической карты к модели рельефа ГИС).

2. Подсистема хранения и выборки данных, организующая пространственные данные с целью их выборки, обновления редактирования.

3. Подсистема манипуляции данными и анализа, которая, выполнив различные задачи на основе этих данных, группирует и разделяет их;

устанавливает параметры и ограничения и выполняет моделирующие функции.

4. Подсистема вывода, которая отображает всю базу данных или часть ее в табличной, диаграммной или картографической форме.

Первая подсистема ГИС может быть соотнесена с первым и вторым шагом процесс картографирования – сбором данных и компиляцией (составлением) карт. Исходная информация берется из таких источников, как аэрофотосъемка, цифровое дистанционное зондирование, геодезические работы, словесные описания и зарисовки, данные статистики и т.д. Использование компьютера и других электронных устройств, например дигитайзера или сканера, позволяет проводить подготовку исходных данных для записи, или кодирования точек, линий и областей к их дальнейшему использованию. Кроме того, источниками могут быть готовые цифровые карты, цифровые модели рельефа, цифровые ортофотоснимки и многие др.

Вторая подсистема – подсистема хранения и выборки полностью соответствует нашим представлениям о функциях компьютера, как хранителя информации. В ГИС подсистема хранения и выборки позволяет делать запросы, возвращающие только нужную, контекстно-связанную информацию, она переносит акцент с общей интерпретации информации на формулирование адекватных запросов. В общих словах, эта подсистема хранит либо явно, либо неявно, геометрические координаты точечных, линейных и площадных геометрических объектов и связанные с ними характеристики (атрибуты). Компьютерные методы поиска естественным образом присущи самому программному обеспечению ГИС.

Анализ данных чаще всего является преимуществом человека-пользователя. Подсистема анализа позволяет значительно упростить и облегчить анализ пространственно-связанных данных, практически исключить ручной труд и в значительной мере упростить расчеты, выполняемые пользователем. Подсистема анализа является "сердцем" ГИС. Необходимость анализа карт для выделения и сравнения картин распределения земных феноменов дал импульс для поиска новых, более удобных, быстрых и мощных методов. ГИС-анализ использует потенциал современных компьютеров, сравнения и описания информации, хранящейся в базах данных которые дают быстрый доступ к исходным данным и позволяют агрегировать и классифицировать данные для дальнейшего анализа. Они способны комбинировать выбранные наборы данных уникальными и ценными способами.

После выполнения анализа, нужно представить как-то его результаты. В картографии, будь то традиционная бумажная картография или ее цифровой эквивалент, компьютерная картография, выходной продукт в целом тот же – карта. Подсистема вывода позволяет компоновать результирующие данные в любой удобной для пользователя форме. Среди примеров выходных данных – печать адресов на конвертах по результатам поиска в базе данных потенциальных клиентов с целью распространения рекламы; базы данных некоторых служб могут быть подключены в единую систему, результатом чего будет максимальная информационная насыщенность данных на выдаче. В действительности типы выдачи часто продиктованы больше областью применения ГИС, нежели используемым программным обеспечением. И, как и пользователи карт, выдачи бывают самые разные [2].
1.1.2. Структура информационных систем
Существует множество видов представления информативных данных. Информационные системы являются одним из таких видов. Например, "информационная система по природным ресурсам", "экологическая информационная система", "земельная информационная система», "кадастровая информационная система" и т.д. Хотя эти термины описывают применение ГИС в общем, они мало помогают прояснить действительную сущность системы. Возможно, здесь окажется полезным более структурированный подход к классификации ГИС в форме таксономического дерева, представленного на рис. 1.1.

Рис. 1.1. Классификация информационных систем
Этот рисунок ясно показывает разделение между пространственными и непространственными информационными системами (ИС). АСУТП относятся к негеографическим пространственным ИС. На ветви географических информационных систем есть еще одно разветвление. ГИС могут делиться на земельные и неземельные, или прочие информационные системы. Хотя такое разбиение несколько искусственно, оно иногда полезно, поскольку отделяет применения ГИС, сфокусированные на собственно земле, от тех, где, хотя и используется геокодирование, значимая информация лишь оказывает влияние на связанные с землей факторы или подвергаться влиянию с их стороны. Примером таких систем являются демографические ИС, основной целью которых являются население, жилищное строительство и экономическая активность, а не земля, на которой эти люди живут. Еще одним общим не связанным с землепользованием применением ГИС является анализ рынка, который может включать определение емкости рынка в заданном радиусе от предприятия. В общем, неземельные применения ГИС обычно включают социальные, экономические, транспортные и политические виды деятельности [12].

Связанные с землей виды деятельности определяют рамки для второго и, возможно наиболее часто используемого типа ГИС — земельных информационных систем (ЗИС). Наиболее часто такие системы основаны на владении, управлении и анализе земельных участков, в основном, в интересах людей и, прежде всего с точки зрения землевладения. Задачи, решаемые ЗИС, могут включать отчуждение земли для заповедников, наблюдение за живой природой, прогноз землетрясений и оползней, устранение последствий наводнений, оценка химического загрязнения, управление лесами и зонами обитания диких животных, научные исследования.

Как в областях, связанных с землей, так и в областях, связанных населением, имеются многие возможности применения геоинформационных технологий, имеющих огромный потенциал, как для простых, так и для сложных видов анализа. Однако большинство из имеющихся приложений сложными не назовешь. По-видимому, это недоиспользование связано больше с незнанием имеющегося потенциала ГИС, нежели с ограничениями имеющегося программного обеспечения. Для того чтобы задать программе задачу, нужно знать, что же это может быть за задача. И тогда уже мы сможем понять, способна ли программа эту задачу выполнить.
1.2. Перспективы развития ГИС в России
Геоинформационные системы (ГИС) в настоящее время широко применяются во всем мире и России во многих областях знаний и промышленности. Рассмотрим более детально вопросы перспектив использования ГИС в нашей стране. Для решения большинства задач в различных областях знаний необходимо создание единого информационного пространства, включающего связанные графические (пространственные) и описательные (атрибутивные) компоненты. Атрибутами графических объектов могут выступать не только их общие характеристики, но и их детальные компоненты и т.п. Широкий круг задач, как для проектировщиков, так и для эксплуатационников требует проведения специальных расчетов, моделирующих происходящие процессы, например, распространение вредных примесей в компонентах окружающей среды (атмосфере, поверхности природных водоемов и т.п.) с учетом рельефа территории района и размещения производств. Задачи анализа эффективности эксплуатации производств, планирования развития требуют учета очень многих характеристик окружающей среды, а также знания социально-демографической, промышленной, градостроительной, экономической ситуации района их размещения. Для их решения необходимо использование информационной базы данных, картографическое представление данных и изучение методами геоинформатики пространственно-временных связей явлений, процессов и действий субъектов рынка. Эти задачи также целесообразно решать с использованием подходов ГИС-технологий.

Также целесообразно использование ГИС при планировании распределения сельскохозяйственных угодий, проведения ирригационных работ, в лесном хозяйстве, в коммерческих и государственных организациях, где они могут улучшить механизм принятия решений через использование пространственной информации. Возможности пространственного представления и анализа информации дают стратегическое преимущество многим специалистам в отделах планирования, логистики, маркетинга, работы с клиентами, предоставления услуг и т. д.

ГИС-технологии хорошо удовлетворяют потребности многих секторов рынка, в том числе и в области инженерных сетей. Они активно используются уже длительное время, но в первую очередь в системах сбора данных о состоянии сетевых объектов в поле и в приложениях, где рассматривались не только сети сами по себе, но их взаимодействие с окружением, средой. C появлением объектно-реляционных моделей данных в ГИС намечается быстрый прогресс в моделировании динамических сетей и они будут хорошо интегрироваться с корпоративными базами данных. В чуть более дальней перспективе от применения объектно-реляционной модели можно ожидать прогресса в таких наболевших вопросах, как взаимоувязка длинных и коротких транзакций и автоматическая схематизация сетевых моделей. Применение ГИС технологий сможет ускорить процесс обработки информации практически во всех отраслях народного хозяйства, связанных с использованием географических данных [9,10].

2. Основные термины и понятия
2.1. Понятие карты и работа с ней
Для более точного понимания рассматриваемых вопросов дадим основные понятия и термины.

Карта является основным языком географии. Следовательно, она является и основным языком компьютеризованной географии. Эта графическая форма представления пространственных данных состоит из различных координатных систем, проекций, наборов символов, методов упрощения и генерализации. В геоинформатике встречается большое разнообразие карт из курсов геологии, топографии или почвоведения. Вдобавок к геологическим, топографическим, кадастровым и почвенным картам, используемым в этих дисциплинах, тематическое наполнение покрытий ГИС включает карты растительности, транспорта, распределения животных, коммунальных служб, планы городов, зональные карты, карты землепользования, ландшафтов и снимки дистанционного зондирования. Эти карты могут иметь как вполне привычный вид, так и такие нетрадиционные формы как блок-диаграммы, карты плотности точек, объемные карты и множество других типов.

Исследование земли посредством ГИС основывается на нашей способности мыслить пространственно. Пространственное мышление требует от нас умения выбирать, наблюдать, измерять, записывать и характеризовать то, что нам встречается. Реальная ценность объектов в картографической форме представления зависит от решаемых задач, от того, пытаемся ли мы лишь изобразить карту или анализировать ее в ГИС. Чем больше мы знаем о возможных сочетаниях графических элементов и о том, как с ними обходятся на картографических документах, тем яснее наш географический язык. Более развитый уровень понимания графических приемов пригодится во всех четырех подсистемах ГИС. При вводе существующих карт в геоинформационную систему необходимо знать о влиянии различных уровней генерализации, масштабов, проекций, символизации и т.п. на то, что вводится, и как это вводится. Для анализа данных необходимо знать о возможности ошибок в некоторых покрытиях, созданных из мелкомасштабных карт. При выводе возникает проблема отображения результатов анализа при решении которой необходимы знания о картографических методах и критериях дизайна.

Карта является моделью пространственных явлений, абстракцией. Однако, необходимо признать, что отображение всех деталей и объектов невозможно. Есть пределы тому, что мы можем изображать на картах. Главной причиной нашей переоценки возможностей карт в отображении реальности является то, что они – среди наиболее удачных графических инструментов, созданных для передачи пространственной информации. Карты существуют тысячи лет, и все мы больше или меньше привыкли их видеть.

Карты бывают разных видов и на разные темы. Два основных типа – это карты общегеографические и тематические. Наиболее часто в ГИС нам придется иметь дело с тематическими картами, хотя общегеографические и топографические карты тоже используются для ввода в ГИС, главным образом для того, чтобы обеспечить общегеографическую основу для сложных тематических карт.

Карты, как изображения мира показывают как положения объектов в пространстве и их форму, так и качественные, и количественные их характеристики. Эти взаимосвязанные геометрические объекты и атрибуты необходимы для картографического документа. Но независимо от того, какие объекты реального мира представляются этими точками, линиями, площадями или поверхностями они не могут выступать в качестве миниатюризации действительности из-за ограничений масштаба. Вместо этого они должны храниться в памяти компьютера, а затем, при отображении, используется какой-либо набор символов для их представления. Символы, в свою очередь, должны иметь ключ к их пониманию, называемый легендой карты. Легенда тактически соединяет геометрические объекты с их атрибутами, после чего каждый из них может быть воспринят в качестве представления реального объекта с его количественными характеристиками. Таким образом, может представить себе, что же в действительности наблюдалось при сборе исходных данных.

2.2. Пространственные объекты
Все реальные объекты отображаются на картах какими либо условными знаками, точками, линиями, полигонами или поверхностями. Кроме того, немаловажным фактором является цветовая градация объектов, например изображение ландшафта или распределение плотности населения. Примеры картографического представления объектов реального мира основными типами графических примитивов можно увидеть на рис. 2.1.

Рис. 2.1. Объекты реального мира и картографическое представление
Точки, линии, области и поверхности вместе могут представлять большинство природных и социальных феноменов, которые мы встречаем каждый день. В рамках ГИС объекты реального мира явно представляются тремя типами объектов из указанных. Точки, линии и области могут представляться соответствующими символами, поверхности же представляются чаще всего либо высотами точек, либо другими компьютерными средствами. Феномены непространственные по своей природе не могут непосредственно исследоваться в ГИС, если только им не присвоить некоторые представляющие их пространственные характеристики. Рассмотрим пространственные объекты более подробно.

Точечные объекты – это такие объекты, каждый из которых расположен только в одной точке пространства. Примером таких объектов могут быть деревья, дома, перекрестки дорог, и многие другие. О таких объектах говорят, что они дискретные, в том смысле, что каждый из них может занимать в любой момент времени только определенную точку пространства. В целях моделирования считают, что у таких объектов нет пространственной протяженности, длины или ширины, но каждый из них может быть обозначен координатами своего местоположения. В действительности, все точечные объекты имеют некоторую пространственную протяженность, пусть самую малую, иначе мы просто не смогли бы их увидеть. Принимаем отсутствие длины и ширины так, что, например, при измерениях атмосферного давления, характеризуемых потенциально бесконечным числом точек, сами точки всегда занимают определенные местоположения без каких-либо перекрытий. Масштаб, при котором мы наблюдаем эти объекты, задает рамки, определяющие представление этих объектов как точек. Например, если вы смотрите на дом с расстояния нескольких метров, то сооружение выглядит внушительным и имеет существенные длину и ширину. Но это представление меняется, когда вы начинаете отдаляться: чем дальше, – тем меньше дом выглядит как площадный объект, тем больше – как точечный.

Линейные объекты представляются как одномерные в нашем координатном пространстве. Такими "одномерными" объектами могут быть дороги, реки, границы, изгороди, любые другие объекты, у которых один из геометрических параметров существенно больше другого. Масштаб, при котором мы наблюдаем эти объекты, опять же, обусловливает порог, при пересечении которого мы можем считать эти объекты не имеющими ширины. Как вы знаете, реки, дороги, изгороди имеют два измерения при близком рассмотрении. Но чем дальше мы от них, тем более тонкими они становятся. Постепенно они становятся такими тонкими, что оказывается возможным представить их себе как линейные объекты. Другие линии, такие как политические границы, вообще не имеют ширины. В действительности, эти линии даже не являются материальными сущностями, а возникают как следствие политических соглашений.

Для линейных объектов, в отличие от точечных, мы можем указать пространственный размер простым определением их длины. Кроме того, поскольку они не занимают единственное местоположение в пространстве, мы должны знать, по меньшей мере, две точки – начальную и конечную – для описания местоположения линейного объекта в пространстве. Чем сложнее линия, тем больше точек нам потребуется для указания точного ее расположения. Опираясь на геометрию, мы можем также определять формы и ориентации линейных объектов.

Объекты, рассматриваемые с достаточно близкого расстояния, чтобы иметь и длину и ширину, называются областями или площадными объектами. Примеры областей, или "двухмерных" объектов, включают территории, занимаемые двором, городом или целым континентом. При определении местоположения области в пространстве мы обнаруживаем, что ее граница является линией, которая начинается и кончается в одной и той же точке. Помимо указания местоположения областей через использование линий, мы можем себе представить теперь три характеристики: как и для линий, мы можем указывать их форму и ориентацию, а теперь еще и величину площади, которую область занимает.

Добавление нового измерения, высоты, к площадным объектам позволяет нам наблюдать и фиксировать поверхности. Хотя мы можем рассматривать дом с близкого расстояния и описывать его в терминах его общей длины и ширины, нам часто нужно знать, сколько в нем этажей. В таком случае нам нужно рассматривать дом не как плоскую область, а как трехмерный объект, имеющий длину, ширину и высоту. Поверхности окружают нас повсюду. Холмы, долины, гряды гор, скалы и множество других образований могут описываться указанием их местоположения, занимаемой площади, ориентации, и теперь, с добавлением третьего измерения, их высот [3].

Рис. 2.2. Непрерывные и дискретные поверхности
Поверхности состоят из бесконечного числа точек со значениями высот. Мы говорим, что они непрерывны, поскольку эти точки распределены без разрывов по всей поверхности, что показано на рис. 2.2. В действительности, поскольку высота трехмерного объекта меняется от точки к точке, мы можем также измерять величину изменения высоты с перемещением от одного края до другого. Имея такую информацию, мы можем определить объем материала в выбранном образовании. Возможность таких вычислений весьма полезна, когда нам нужно узнать, сколько воды содержится в водоёме или сколько материала (пустой породы) лежит поверх угольного пласта.
2.3. Шкалы измерений
Картографические объекты содержат информацию не только о том, как они занимают пространство, но и о том, чем они являются и насколько они важны для нашего рассмотрения. Например, дерево, обозначенное как точечный объект, может быть отнесено к определенному классу на основе таксономической терминологии, то есть дуб, сосна и т.п. Мы можем узнать также возраст дерева, пробурив его и подсчитав годовые кольца. Дополнительная непространственная информация, помогающая нам описывать объекты, наблюдаемые в пространстве, образует набор атрибутов объектов.

Атрибуты объектов затем можно распределять по категориям, а затем классифицировать. Это делается для того, чтобы можно было сказать, что определенный объект с определенным названием и с некоторыми измеримыми атрибутами существует в определенном месте. Но перед тем как присвоить эти атрибуты объектам, мы должны знать, как их измерять. Иначе мы не сможем сравнивать объекты в одном месте с объектами в другом месте.

Существует устоявшаяся основа для измерения практически всех видов данных, в том числе и географических. Эти так называемые шкалы измерения данных простираются от простого именования объектов, до высокоточных измерений, позволяющих нам непосредственно сравнивать качества различных объектов. Используемая шкала измерений будет определяться отчасти типом классификации, отчасти необходимой информацией, и отчасти возможностями производить измерения при заданном масштабе наблюдения.

Существует огромное количество шкал, приведем некоторые из них. Номинальная шкала, из названия которой следует, что объекты различаются по именам. Эта система позволяет говорить о том, как называется объект, но не позволяет делать прямого сравнения объектов.

Если необходимо провести более тонкое сравнение объектов, то следует выбрать более высокую шкалу измерений. Таковой является порядковая шкала, позволяющая проводить качественное сравнение от лучшего к худшему для данного конкретного вопроса. Если необходима более высокая точность в измерениях, то нужно воспользоваться интервальной шкалой измерения, в которой измеряемым величинам приписываются численные значения. Как и в случае порядковой шкалы, здесь тоже можно сравнивать объекты, но сравнения могут делаться с более точной оценкой различий. Хорошим примером пространственных данных, измеряемых в интервальной шкале, является температура почвы на некоторой исследуемой площади с различными типами почв. Последняя и наиболее "количественная" шкала измерений – это шкала отношений.



  1   2   3   4
Учебный текст
© perviydoc.ru
При копировании укажите ссылку.
обратиться к администрации